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Summary: The absolute stereostructures of two pentacyclic hydroquinones, 

halenaquinol (A) and halenaquinol sulfate (3 from the Okinawan marine sponge 

Xestospongia sapra, have been determined by means of theoretical calculation 

of CD spectra. 

During the studies on marine natural products, 1) we isolated two yellow 

pigments named halenaquinol (A) and halenaquinol sulfate (2) from the Okinawan 

marine sponge Xestospongia sapra and elucidated their plane structures. 2) 

Halenaquinol (i) was readily oxidized either by UV-irradiation or by heating 

(even at 40°C) in the air to afford halenaquinone (4_,),2) an antimicrobial 

constituent of the Hawaiian marine sponge Xestospongia exigua. 3) 

Recently, it has begun to be recognized that the a-electron SCF-CI dipole 

velocity molecular orbital method 4,5) for calculation of CD Spectra is a quite 

useful tool for determination of the absolute stereochemistry of natural prod- 

ucts with a distorted a-electron chromophore. 6,7,8) For example, one group 

of the authors determined the absolute stereochemistry of (+)-1,8a-dihydro- 

3,8_dimethylasulene by applying the MO method. 6) In this paper, we report 

the absolute stereostructures of halenaquinol (L) and halenaquinol sulfate (2) 

as determined by the theoretical calculation of CD spectra. 

In order to determine the absolute configuration in a reliable manner, 

several pertinent derivatives (I, k-12) of halenaquinol (2) were prepared. 

Methylation of halenaquinol (2) in acetone with CH31-K2C03 (reflux for 14 h) 
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in the dark furnished the dimethyl ether [(+)-21, yellow needles, C22H1805, 9) 

mp 235OC, [a], +22O, 6 (CDC13)10): 3.98 (6H, s). Treatment of 2 in MeOH- 

CH2Cl with one molar equivalent of NaBH4 

7H2012) 

at 20°C in the presence of CeC13. 

selectively afforded the 313-01 deriv. (;), C22H2005, 6 (CDC13): 5.00 

(lH, dd, J=8.0, 8.0 Hz, 3a-H), which was tert-butyldimethylsilylated (TBDMS) to 

give 2, C28H3405Si. Further reduction of 2 with NaBH4-CeC13.7H20 and subse- 

quent treatment with a catalytic amount of 1N aq. HCl provided two hemiacetals 

: (-)-$i)C2gH3805Si, [a], -151°, and (+)-l.0, C2gH3805Si, [cJD +20°, in 2:l 

ratio. The 1~ and 13C NMR data for (-)-213) indicated presence of the la- 

methoxy-3S-TBDMS-oxy structure in 5, whereas the 16-methoxy-3S-TBDMS-oxy struc- 

ture in (+)-l,O was substantiated by its lH and 13C NMR spectra 14) and by the 

NOE enhancement observed between lu-H and 3a-H (Fig. 1). 15) 

Among these derivatives, the naphthalene-diene compounds C-)-g and (+)-12 

are quite suitable for determination of the absolute configuration because 

their CD spectra are relatively simple in shape, showing intense Cotton ef- 

fects, as exemplified in Fig. 2. On the other hand, the diketone (+)-A is un- 

suitable because of its complex and weak CD Cotton effects. Therefore, we 

adopted the molecule (g) as a model compound for the calculation of CD spec- 

tra (Fig. 3). 

The absolute configuration of 5 was arbitrarily chosen to be 6S for the 

calculation. The atomic coordinates were calculated by the method of the mo- 

lecular mechanics (MMPI).16) The theoretical calculation of the CD and UV 

spectra of (6S)-1_1 by the a-electron SCF-CI-DV MO method afforded the curves 

illustrated in Fig. 3. The UV spectrum curve exhibits two intense ?I+TI* bands 

:x max 349 nm (E 29900) and 219 nm (E 40300). The calculated values agree 

closely with the observed UV data for 2: Amax 324 nm (E 27000) and 218 nm (E 

42000). 

In the case of CD spectra, these UV transitions yielded three principal 

Cotton effects: Xext 378 nm (Ae +3.3), 322 nm (AE -22.4), and 223 nm (A& 

+35.5). These calculated values are in good agreement with the observed data 

for (-)-2: Xext 338 nm (AE +6.4), 301 nm (As -23.3), and 229 nm (AE +40.9). 

It is thus evident that the CD spectral data, including the sign and amplitude 

of the Cotton effects, were well reproduced by the calculation, when Fig. 2 

and 3 were compared with each other. The calculated CD curve of (65)-s also 

resembles the observed one of (+)-12: Xext 341 nm (As +6.1), 302 nm (AE -15.2), 

and 231 nm (A& +29.4). Accordingly, the absolute stereochemistry of the di- 

ene derivatives [(-)+I_ and (+)-121, halenaquinol (A), and halenaquinol sulfate 

(2_) was theoretically determined to be 65, as shown in structures 2, l$, ,I, 

and 2, respectively. 

It should be noted that the absolute configuration of haIenaquino1 (&) 

was unambiguously determined by application of the r-electron SCF-CI-DV MO 

method. The present methodology would become a promising tool for determina- 

tion of the absolute stereochemistry of various natural products with a dis- 

torted x-electron system. 
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